发布于 2016-04-01 10:21:16 | 311 次阅读 | 评论: 0 | 来源: 分享

这里有新鲜出炉的Python-OpenCV 图像与视频处理教程,程序狗速度看过来!

OpenCV 跨平台计算机视觉库

OpenCV的全称是:Open Source Computer Vision Library。OpenCV是一个基于(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。


近几天微软的发布会上讲到了不少认脸解锁的内容,经过探索,其实利用手头的资源我们完全自己也可以完成这样一个过程。

本文讲解了如何使用Python,基于OpenCV与Face++实现人脸解锁的功能。

本文基于Python 2.7.11,Windows 8.1 系统。

主要内容

  • Windows 8.1上配置OpenCV
  • OpenCV的人脸检测应用
  • 使用Face++完成人脸辨识(如果你想自己实现这部分的功能,可以借鉴例如这个项目)

Windows 8.1上配置OpenCV

入门的时候配置环境总是一个非常麻烦的事情,在Windows上配置OpenCV更是如此。

既然写了这个推广的科普教程,总不能让读者卡在环境配置上吧。

下面用到的文件都可以在这里(提取码:b6ec)下载,但是注意,目前OpenCV仅支持Python2.7。

将cv2加入site-packages

将下载下来的cv2.pyd文件放入Python安装的文件夹下的Libsite-packages目录。

就我的电脑而言,这个目录就是C:Python27Libsite-packages

记得不要直接使用pip安装,将文件拖过去即可。

安装numpy组件

在命令行下进入到下载下来的文件所在的目录(按住Shift右键有在该目录打开命令行的选项)

键入命令:


pip install numpy-1.11.0rc2-cp27-cp27m-win32.whl

如果你的系统或者Python不适配,可以在这里下载别的轮子。

测试OpenCV安装

在命令行键入命令:


python -c "import cv2"

如果没有出现错误提示,那么cv2就已经安装好了。

OpenCV的人脸检测应用

人脸检测应用,简而言之就是一个在照片里找到人脸,然后用方框框起来的过程(我们的相机经常做这件事情)

那么具体而言就是这样一个过程:

  • 获取摄像头的图片
  • 在图片中检测到人脸的区域
  • 在人脸的区域周围绘制方框

获取摄像头的图片

这里简单的讲解一下OpenCV的基本操作。

以下操作是打开摄像头的基本操作:


#coding=utf8
import cv2

# 一般笔记本的默认摄像头都是0
capInput = cv2.VideoCapture(0)
# 我们可以用这条命令检测摄像头是否可以读取数据
if not capInput.isOpened(): print('Capture failed because of camera')

那么怎么从摄像头读取数据呢?


# 接上段程序
# 现在摄像头已经打开了,我们可以使用这条命令读取图像
# img就是我们读取到的图像,就和我们使用open('pic.jpg', 'rb').read()读取到的数据是一样的
ret, img = capInput.read()
# 你可以使用open的方式存储,也可以使用cv2提供的方式存储
cv2.imwrite('pic.jpg', img)
# 同样,你可以使用open的方式读取,也可以使用cv2提供的方式读取
img = cv2.imread('pic.jpg')

为了方便显示图片,cv2也提供了显示图片的方法:


# 接上段程序
# 定义一个窗口,当然也可以不定义
imgWindowName = 'ImageCaptured'
imgWindow = cv2.namedWindow(imgWindowName, cv2.WINDOW_NORMAL)
# 在窗口中显示图片
cv2.imshow(imgWindowName, img)

当然在完成所有操作以后需要把摄像头和窗口都做一个释放:


# 接上段程序
# 释放摄像头
capInput.release()
# 释放所有窗口
cv2.destroyAllWindows()

在图片中检测到人脸的区域

OpenCV给我们提供了已经训练好的人脸的xml模板,我们只需要载入然后比对即可。


# 接上段程序
# 载入xml模板
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# 将图形存储的方式进行转换
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 使用模板匹配图形
faces = faceCascade.detectMultiScale(gray, 1.3, 5)
print(faces)

在人脸的区域周围绘制方框

在上一个步骤中,faces中的四个量分别为左上角的横坐标、纵坐标、宽度、长度。

所以我们根据这四个量很容易的就可以绘制出方框。


# 接上段程序
# 函数的参数分别为:图像,左上角坐标,右下角坐标,颜色,宽度
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

成果

根据上面讲述的内容,我们现在已经可以完成一个简单的人脸辨认了:


#coding=utf8
import cv2

print('Press Esc to exit')
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
imgWindow = cv2.namedWindow('FaceDetect', cv2.WINDOW_NORMAL)

def detect_face():
    capInput = cv2.VideoCapture(0)
    # 避免处理时间过长造成画面卡顿
    nextCaptureTime = time.time()
    faces = []
    if not capInput.isOpened(): print('Capture failed because of camera')
    while 1:
        ret, img = capInput.read()
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        if nextCaptureTime

使用Face++完成人脸辨识

第一次认识Face++还是因为支付宝的人脸支付,响应速度还是非常让人满意的。

现在只需要免费注册一个账号然后新建一个应用就可以使用了,非常方便。

他的官方网址是这个,注册好之后在这里的我的应用中创建应用即可。

创建好应用之后你会获得API Key与API Secret。

Face++的API调用逻辑简单来说是这样的:

  • 上传图片获取读取到的人的face_id
  • 创建Person,获取person_id(Person中的图片可以增加、删除)
  • 比较两个face_id,判断是否是一个人
  • 比较face_id与person_id,判断是否是一个人

上传图片获取face_id

在将图片通过post方法上传到特定的地址后将返回一个json的值。

如果api_key, api_secret没有问题,且在上传的图片中有识别到人脸,那么会存储在json的face键值下。


#coding=utf8
import requests

# 这里填写你的应用的API Key与API Secret
API_KEY = ''
API_SECRET = ''

# 目前的API网址是这个,你可以在API文档里找到这些
BASE_URL = 'http://apicn.faceplusplus.com/v2'

# 使用Requests上传图片
url = '%s/detection/detect?api_key=%s

创建Person

这个操作没有什么可以讲的内容,可以对照这段程序和官方的API介绍。

官方的API介绍可以见这里,相信看完这一段程序以后你就可以自己完成其余的API了。


# 上接上一段程序
# 读取face_id
if not faces is None: faceIdList = [face['face_id'] for face in faces]

# 使用Requests创建Person
url = '%s/person/create'%BASE_URL
params = {
    'api_key': API_KEY,
    'api_secret': API_SECRET,
    'person_name': 'LittleCoder',
    'face_id': ','.join(faceIdList), }
r = requests.get(url, params = params)
# 获取person_id
print r.json.()['person_id']

进度确认

到目前为止,你应该已经可以就给定的两张图片比对是否是同一个人了。

那么让我们来试着写一下这个程序吧,两张图片分别为’pic1.jpg’, ‘pic2.jpg’好了。

下面我给出了我的代码:


def upload_img(fileDir, oneface = True):
    url = '%s/detection/detect?api_key=%s

成品

到此,所有的知识介绍都结束了,相比大致如何完成这个项目各位读者也已经有想法了吧。

下面我们需要构思一下人脸解锁的思路,大致而言是这样的:

  • 使用一个程序设置账户(包括向账户中存储解锁用的图片)
  • 使用另一个程序登陆(根据输入的用户名测试解锁)

这里会有很多重复的代码,就不再赘述了,你可以在这里或者这里(提取码:c073)下载源代码测试使用。

这里是设置账户的截图:

设置账户

这里是登陆的截图:

登陆

结束语

希望读完这篇文章能对你有帮助,有什么不足之处万望指正(鞠躬)。



相关阅读 :
使用 OpenCV 与 Face++ 实现人脸解锁
OpenCV实现人脸识别
基于OpenCV的PHP图像人脸识别技术
Ubuntu 17.04系统下源码编译安装opencv的步骤详解
在树莓派2或树莓派B+上安装Python和OpenCV的教程
Python-OpenCV 处理视频(一): 输入输出
Python-OpenCV 处理视频(二): 视频处理
Python-OpenCV 处理视频(三): 标记运动轨迹
Python-OpenCV 处理视频(四): 运动检测
Python-OpenCV 处理视频(五):运动方向判断
Python-OpenCV 杂项(一):图像绘制
Python-OpenCV 杂项(二): 鼠标事件
最新网友评论  共有(0)条评论 发布评论 返回顶部

Copyright © 2007-2017 PHPERZ.COM All Rights Reserved   冀ICP备14009818号  版权声明  广告服务